
Journal of Quality and Technology Management 
Volume X, Issue II, December 2014, Page 139 – 154 

 

TAXONOMY AND DESIGN CONSIDERATIONS FOR 
COMMENTS IN PROGRAMMING LANGUAGES:  

A QUALITY PERSPECTIVE 
 

M.S. Farooq1,2, S.A. Khan2, K. Abid3, F. Ahmad4, M.A. Naeem3,  
M. Shafiq3a, *A. Abid1 

1Department of Computer Science, University of Management and 
Technology, Lahore. 

2Abdul Wali Khan University, Mardan. 
3Department of Electrical Engineering, University of the Punjab, Lahore. 

3aInstitute of Quality & Technology Management, University of the 
Punjab, Lahore. 

4Faculty of Information Technology, University of Central Punjab, Lahore. 
 

ABSTRACT 
 
Comments have an important role in software development. Especially medium 
to large scale projects have a reasonably large code base. Useful and good quality 
comments play a significant part while maintaining and evolving such projects. 
In this work we present a taxonomy of comments based on their styles, parsing 
rules, recursivity, and usage. We also present quality design considerations 
which the programming languages should ensure so that the support of 
comments should be free of any side effects. 
 
Keywords: Comments; programming languages; block comments; inline 
comments 
 

1) INTRODUCTION 
 
Comments are most important lexical constructs of programming 
languages. (Raskin, 2005) Comments are used in the program for various 
different useful reasons such as, elaboration of programming logic, 
debugging code, code versioning, copyrights, and documentation 
purpose. (Hirata and Mizuno, 2011) In most of the software industry, it is 
mandatory to add comments in the program using special format because 
they want to create proper program docs (documentation). It highly 
demanded by quality coding standards to add and write a proper 
comment in APIs (Application Programmer Interface). (Jiang and Hassan, 



Taxonomy and Design Considerations for Comments in Programming Languages: A Quality Perspective 

140| 

2006) (Farooq et al., 2014) (MISRA♦C++, 2008) Comments also plays 
major role in program readability, maintenance and safety. (Ying et al., 
2005) (Fluri et al., 2007) (Farooq et al., 2012) In software industry 90% of 
the projects belongs to the maintenance and in enhancement phase. 
(Seacord et al., 2003) (Bacchelli and Bird, 2013) Due to heavy turnover in 
the software industry most of the time the Programmer who wrote the 
program are not available when the same program in maintenance and 
enhancement stage, therefore in this situation a proper commented 
program helps the maintenance programmer in order to understand 
programming logic. In APIs, program documents generated based on 
comments helps a lot for novices and experts to understand language 
interfaces and function signatures. In this research, we have three 
contributions, i) highlight major design issues of comments; ii) evaluate 
comments of seven mainstream programming language and highlight 
their drawbacks and usage in programs; iii) propose quality and safe 
comments if any available in these languages.  
 

2) RELATED WORK 
 
Hirata et al. (Hirata and Mizuno, 2011) answer the following question 
―Do comments describe the code adequately‖, they have analyzed 
Integrated  Development Environments (IDE) NetBeans and Eclipse, 
which support Java language. They conclude that end of line comments is 
more adequate as compared to block comments. Another study focused 
on finding relationship between comments in source code and bugs ratio. 
(Lind, 1989) (Tan et al., 2007) 
 
Haouari et al. (Haouari et al., 2011) conduct an empirical study on 
different open source Java projects, study comments from both point of 
view i.e. quantitative and qualitative. They also propose a taxonomy of 
comments, and found that an important portion of comments is dedicated 
to the communication between programmers or to note for future 
changes. Tan et al. (Tan et al., 2007) presents a method analyze code 
automatically and detect comment inconsistencies with source code. In 
(DePasquale and Locasto, 2010) discussed and presents enhancing quality 
of source code using comments. Sridhara et al. (Sridhara et al., 2010) 
presents a novel technique for generating comments for Java methods. In 
(Mason, 2003) focus on the importance of comments and strongly 
encourage instructors to motivate their students about commenting in 
source code. Farooq et al. (Farooq et al., 2014) (Farooq et al., 2012) 



Journal of Quality and Technology Management 

|141 

presents comprehensive framework for evaluating first programming 
languages and propose comments as a major quality attribute for novice 
programmers. They rate a language higher if some programming 
language supports newline, documentation and mega comment. 
 

3) TAXONOMY OF COMMENTS 
 
In this section, we discuss a taxonomy of comments which is shown in 
Figure 1. We have discussed comments used in programming languages 
from the perspectives of styles, parsing rules, recursivity, and usage. 
 

 
 

Figure 1: Taxonomy of Comments 

 
3.1) Comment Style 
 
Here, comment style means physical layout (syntax) of the comment. 
There are three types of comments that falls in style class; i) block 
comments ii) line comments. The block comment consists of one or more 
lines, whereas, a line comment is written on a single line. The line 
comments can be further divided into two types of comments which are 
full-line comments, and in-line comments. 
 
3.1.1) Block Comments 
 
Block comments can be written on a single line, as well as on multiple 
lines. These comments have special start and end delimiters, and they can 
be written anywhere in the program. Coding standards discourage block 
comments as they are prone to errors. (MISRA♦C++, 2008) One serious 
problem in block comment is that novice programmer may accidentally 



Taxonomy and Design Considerations for Comments in Programming Languages: A Quality Perspective 

142| 

forget to end the comment which may swallow useful code. It will be 
swallowed as shown in code listing 1 (line 1-4). Due to such possible side 
effects some languages also discourage the usage of block comments, e.g. 
Ada and Python do not have block comments. 
 

Code Listing 1: Accidental Code Swallowing while using Block Comments 

1) /* Set  value of count to 1 
2) count =10; 
3) size= count +1; 
4) /* size should be count plus one */ 
5) size =size *count; 

 
3.1.2) Line Comments 
 
In-line Comment: In-line comment is an easy and flexible type of comment, 
can be written anywhere in program delimited with line feed. Quality 
Coding Standard prefers this type of comment, and also considered to be 
less error prone for novice programmers. (MISRA♦C++, 2008) Among 
different types of comments the in-line Comment is the most 
unambiguous and preferable comment. (Farooq et al., 2014) Code Listing 
2 (line 4) and Code listing 3 (line 5) show in-line comment in Java and 
Ada, respectively. Table 1 shows in-line comment supported by 
mainstream programming languages. 
 

Code Listing 2: In-line comment in Java Code Listing 3: Inline Comment in Ada 

1) class Test{ 1) with Text_To; use Text_To 

2) public static void main (int arg []){ 2) procedure MyHello is 

3) System.out.print(―Hello World!‖); 3) begin 

4) // My First program in Java 4) put(―Hello World!‖); 

5) } 5) -- my first program in Ada 

6) } 6) end MyHello; 

 
  



Journal of Quality and Technology Management 

|143 

Table 1: Inline Comments Support by Mainstream Programming Languages. 
 

Language Syntax Example 

Fortran 95 Sign of exclamation! ! my first comment 

Ada, SQL, Haskell, AppleScript Double hyphenation -- --My first comment 

C++, Java, C#, PHP, JavaScript, 
Objective C, Scala, Action Script 

Double forward slash // // my first comment 

Python, Ruby, Perl, Unix Shells, 
Windows power Shell  

Number Sign  # # my first comment 

VBScript, visual basic, Single quote  ‗ ‗ my first comment 

Lisp, Scheme Semicolon ; ; my first comment 

 
Full Line Comment: Full line comments cover a complete line for 
presenting a comment, where no piece of code is written on the same line. 
Full Line Comments were used in the early days of programming when 
programs were written on punch cards and computer used to work with 
very low memory. For this reason early languages such as Fortran, 
COBOL and BASIC language support full line comment with various 
different syntaxes as shown in Table 2. Modern languages also expose 
inline comments in the form of full-line comment in case where the inline 
comment commences at the start of the line. 
 

Table 2: Full-line Comments Support by Different Languages 

 

Language Syntax Example 

Fortran Character C in position 1 C          my first comment 

COBOL Character * at position 7 010111*    my first comment 

BASIC, batch files String ―REM‖ at start of line REM       my first comment 

 

3.2) Classification Based on Parsing Rules  
 
It has been a common practice in most of the language specifications and 
compilers that they ignore comments. However, in other cases the 
compilers store the comments or interpolate them. In this subsection we 
have discussed these different parsing behaviors of the compilers while 
processing the comments. 
  



Taxonomy and Design Considerations for Comments in Programming Languages: A Quality Perspective 

144| 

3.2.1) Ignored Comments 
 
Here ignore means the compiler should discard comment after the first 
phase (Lexical Analysis) of compilation process. The lexical analyzer 
checks the syntax of the comment through predefined patterns and then 
throws away string of comment without generating token for syntax 
analyzer. C, C++, Java and other C-family languages support this concept. 
 
3.2.2) Stored Comments 
 
Stored comments are important and are highly demanded feature in the 
programming languages where third party APIs are heavily used. 
(Sommerlad et al., 2008) (Arafat and Riehle, 2009) (Norick et al., 2010) The 
stored comments are not stripped-out from target code generated by the 
compiler, but they are retained throughout the run time of the program in 
memory. The programmer can retrieve the comments on demand that are 
synchronized with code. This is possible because the compiler preserves 
these types of comments into a separate file synchronized with the target 
code. These types of comments can be retrieved at any time when 
required to get help regarding interfaces, function, or classes after 
compilation, as well as during execution. For example Python 
documentation comment is stored in .pyc byte code file. The programmer 
can retrieve these comments using moduleName.__doc__ explicit call. The 
Code Listing 4 defines a function square, which can be called with shell 
session presented in Code Listing 5. It has print result plus 
documentation comment of function square that are stored in memory. 
These types of comments are also called Docstring. Programming 
languages like Clojure, Elixir, Lisp and Python support stored (Docstring) 
comments. 
 
Code Listing 4: Store in Memory Comment 
in Python 

Code Listing 5 :Python Shell Session 
Commands 

1) def square(number): 1) $ python –c 'print math.square(2); 

2) ―――computes square of math.square.‖‖‖ 2) print math.__doc__' 

3) return number * number 3) 4 

 4) computes square of math.square 

 
  



Journal of Quality and Technology Management 

|145 

3.2.3) Interpolated Comment 
 
A language that supports interpolated string may support interpolated 
comment. String interpolation is a way to construct a new String value 
from a mix of constants, variables, literals, and expressions by including 
their values inside a string literal. Interpolated comment is a special type 
of comment that are based on interpolated strings and comment strings 
generated using pre-execution of programs. 
 
3.3) Recursivity of Comments 
 
Nesting of comment inside another comment is considered recursive 
comment. In this case, the inner comment is redundant as already 
commented code has been again commented with higher scope 
comments. 
 
3.3.1 Recursive Comments 
 
Nested comments are used to comment code that is already commented. 
The Code listing 6 (line 4 to 6) shows the comment nesting in Java. It 
enhances the language comment defining flexibility, but it has 
disadvantages too. Recursivity with block comments results in code 
swallowing problem as discussed in Code listing 2. Here swallowing 
means accidently some lines are commented out due to missing end part 
of a block comment. These types of practices are discouraged in quality 
coding standards and in literature. Rule no 2-7-1 to 2-7-3 of MISRA C++ 
2008 (MISRA♦C++, 2008) standard discourages these type of practices. If 
the compiler checks for accidental code swallowing then recursive 
comments are not prone to errors. 
 

Code Listing 6: Nested Comments in Java 

1) Class Test{ 
2) Public static void main(String a[]){ 
3) int i=10; 
4) /* declare variable i with initial value 10 
5) /* print the value of i on console */ 
6) */ 
7) System.out.println(―valueof i=‖+i); 
8) } 

 
  



Taxonomy and Design Considerations for Comments in Programming Languages: A Quality Perspective 

146| 

3.3.2 Non Recursive Comments 
 
Some languages do not allow nested comments. e.g. In XHTML after 
starting ―<!—― compiler waits for closing ―- - >‖, but if another staring tag 
―<!—― found before ending compiler will generate error. In such case we 
cannot write the recursive code. 
 
3.4) Classification of Comments Based on Usage 
 
Comments also facilitate programmer‘s community to automatic 
generation of documentation, version control, help debugging of 
programs, and also support maintenance of the code. 
 
3.4.1) Documentation Comments 
 
Technical documentation is a mandatory requirement of all software‘s 
especially usage of (Application Programmer Interface) APIs. (Kramer, 
1999) Programmers are encouraged to write documentation comments 
with the code as these types of comments have been quite useful for both 
developers who use these APIs, and also for maintenance programmers 
who change these APIs. Some languages also support documentation 
compiler that is used to create language documentation from these 
comments given by the programmer into known a format such as pdf, or 
HTML. For example Java support javadoc as documentation generation 
compiler used to create HTML documentation form documentation 
comments in source code. C# and VisualBasic.Net support XML 
documentation Comments. Table 3 show documentation supported in 
contemporary languages along with automatic documentation tools. 
 

Table 3: Documentation Comments Supported in Contemporary Languages 

 
Language  Syntax  Example Documentation 

Generation Tool 

Java /** 
* 
*/ 

/** 
*Print count 
*/ 

javadoc 

Python  ―――documentation‖‖‖ ―‖‖Print count‖‖‖ PythonDoc 

PHP /** documentation */ /** Print count */ PHPDoc 

C# /// documentation /// <print> 
/// this function prints count 
/// </print> 

Visual Studio.Net 

VisualBasic.Net ‗‗‗documentation ‗‗‗ <print> Print count </print> Visual Studio.Net 

Perl, Ruby  # documentation # Print count RDoc 



Journal of Quality and Technology Management 

|147 

3.4.2) Version Control 
 
Sometimes latest version of parsers supports new features that are not 
supported by older version parsers. This appears to be a most common 
problem in web browsers, especially in JavaScript parsers. Older 
browsers do not support Java script code so in order to avoid displaying 
code in browser, HTML-style comment is used to hide JavaScript code 
(Code Listing 7). Here old browsers treat JavaScript code as a long HTML 
comment, and new JavaScript browsers interpret code between <script> 
and </script> tag. 
 

Code Listing 7: Hiding JavaScript code from script 

<script type="text/javascript" language="JavaScript"> 
<!— 
function add ( x, y ) { return x+y;} 
//--> 
</script> 

 
Markup languages such as HTML also support these types of comments 
called conditional comments. This type of comments are used to hide or 
provide source code from internet explorer. HTML support two types of 
conditional comments: i) downlevel-hidden conditional (Code listings 8 
and 9); ii) downlevel-revealed conditional (Code Listing 10). The first type 
of comment hides content from browsers that do not support conditional 
comments. If the result of the conditional expression is true, then code 
inside a comment is parsed and executed by the browser. Second type 
enables content in those browsers that do not support conditional 
comments (code listing 10). 
 
Code Listing 8: downlevel-hidden 
HTML Comment 

Code Listing 9: downlevel-hidden 
comment for JavaScript 

<!--[if IE 9]> 
<h1> Hello Internet Explorer 9.</h1> 
<![endif]--> 

<!--[if gte IE 9]> 
<script> 
alert("You are running Internet Explorer 
9 or a later "); 
</script> 
<p>Thank you for choosing Internet 
Explorer.</p> 
<![endif]--> 

 
  



Taxonomy and Design Considerations for Comments in Programming Languages: A Quality Perspective 

148| 

Code Listing 10: Downlevel-revealed conditional comment 

<![if lt IE 8]> 
<h1>Upgrade to latest version of Internet Explorer.</h1> 
<![endif]> 

 
3.4.3) Debugging 
 
Comments are also used for debugging purpose, which is an essential 
activity performed by the programmers while detecting and correcting 
bug in the code. Debugging comments help in conditionally compiling 
the code while there is a major requirement of observing the behavior of 
code by watching some variable or object state. For example, C++ 
supports mega comment for tagging, block of code written for debugging 
purpose by using preprocessor directive (#if ….. #endif). The code 
listings 11 and 12 present examples of debugging code using two 
alternatives, first without debugging comments and second by using 
debugging comment. Clearly, code listing 12 is a better choice than code 
listing 11 because it conserves memory space used for the counter 
variable. Compiler conditionally compiles code, if _debuFlag has been 
defined by the programmer using #define _debugFlag preprocessor 
directive. C# supports these types of comments. 
 

Code Listing 11: Counting Number of 
nodes in a Linked List for debugging 
without mega comment in C++ 

Code Listing 12: Counting Number of 
nodes in a Link List for debugging 
with mega comment in C++  

Bool debugFlag=flase; 
int count=0; 
void traverse(node *p){ 
……… 
……… 
If(debugFlag) count ++; 
} 

#ifdef _debugFlag 
int count=0; 
#endif 
void traverse(node *p){ 
……… 
……… 
#ifdef _debugFlag 
count ++; 
#endif 
} 

 
Extensible Markup Language (XML) also supports mega comment by 
writing DTD (Document Type Definition) in IGNORE block (Code 
Listing 13). 
  



Journal of Quality and Technology Management 

|149 

Code Listing 13: Mega Comment support in XML 

<![IGNORE[ 
<!ELEMENT student (name, department)> 
<!ELEMENT name        (#CDATA)> 
<!ELEMENT department   (#CDATA)> 
]]> 

 
3.4.4) Maintenance:  
 
Comments in programming languages support maintenance of software 
which is an essential activity that supports rectification of errors, and also 
helps evolving the software system. Furthermore, it is not necessary that 
the same person would carry a project‘s development for the whole life 
time of the project, and would also be responsible for its maintenance. 
Rather, usually there is a new person every time the project is evolved. To 
this end, programmers write good quality comments that explain the 
logic and salient points that are considered while coding. Such comments 
help others understand a piece of code, and help detecting the errors from 
the code. 
 

4) DESIGNING GOOD QUALITY COMMENTS 
 
In section 3, we have discussed the comments in programming languages 
from various different perspectives. We have seen that there are some 
issues in using certain types of comments e.g. nesting of block comments 
poses the problem of code swallowing. Hence, it is important to define 
quality standards for designing comments in programming languages. 
Such quality standards should ensure that there should not be any side 
effects while using any type of comment. The general consideration for a 
good quality comment are that it should not compromise on program‘s 
readability, writeability or on safety issues.  
 
The syntax of the comments is covered in the lexical specification of the 
compiler of a language. The lexical analyzer checks comment syntax as 
other lexical units (identifiers, operators etc.), but a general difference is 
that no token is generated for comments, such that the syntax analyzer 
does not get anything related to comments from the lexical analyzer. The 
comment design is a major lexical issue in programming language. A 
language designer should incorporate the following design 



Taxonomy and Design Considerations for Comments in Programming Languages: A Quality Perspective 

150| 

considerations while defining different variants of comments in the 
proposed programming language: 
 
i) What is the starting delimiter or string for comments? 
ii) What is the ending delimiter or string for comments? 
iii) Does the starting position matter in comments formatting? 
iv) Is comment nesting allowed? 
v) Does not have clash with other language construct 
 

4.1) Comment Starting Delimiter/String 
 
Starting delimiter should be an important consideration while designing 
comments. Generally, it is recommended to have one, two or more 
starting characters. Early programming languages have been using one 
character as starting character, but it may create ambiguity when 
programmer accidently inserts that character from the keyboard. Two 
characters start is a reasonably good choice because it minimizes the issue 
or ambiguity of accidental insertion. Three or more characters as starting 
string is too redundant and is creating writeablility problems for 
comments 
 
4.2) Comment Ending Delimiter/String  
 
Ending delimiter or string also plays a major role in program readability 
and writeability. It depends on the comments nature either end of line, 
Full line or block based. Full line and end of line comments use line feed 
character as ending delimiter, while block comment uses some special 
character or set of characters. The considerations for more than one 
character should be the same as of starting delimiter. 
 

4.3) Starting Position of Comment 
 
Form which position we start commenting on the code has not a major 
issue in current languages, but in the early era of programming languages 
when punch cards were used, comment starting position used to carry 
significant weightage. Fortran, COBOL and BASIC use fixed starting 
position for comments, and each comment occupies whole line. So, these 
languages do not expose inline comments. 
 



Journal of Quality and Technology Management 

|151 

As a matter of fact, the starting position of a comment or placement of a 
comment is dependent upon the size of the comment. For instance, for 
small comments we use inline comments, whereas for large comments 
such as some comments about explaining the functionality of a method 
are presented before the definition of a method. 
 

4.4) Comments Nesting 
 
Comments within comments create serious readability problem. Such 
type of comments are strongly discouraged by quality coding standards. 
(Weinman, 1983) (MISRA♦C++, 2008) They also creates classes between 
comments format if language support more than one type of comments. 
For example, if we nest new line comment with in block comments, it 
generates ambiguous results. i.e. newline comment dominates block 
comment ending or block comment dominates newline comment. It also 
creates swallowing code accidently due to wrong nesting. Some 
programming languages do not allow this due to expected misuse of 
nesting in the comments. Some compilers generate warning on nested 
comments. Most of pretty printers used in language IDEs also accidently 
marks code green (normally green color is used for comments) in case of 
misuse of nested comments. Quality coding standards strongly 
discourage nesting comments and such comments are also not practiced 
in the software industry. 
 

4.5) Does not Clash with other Language Constructs 
 
A good quality design of comments for a programming language should 
ensure that the symbols used as starting or ending delimiter should not 
have any syntactic clash with any other language construct (Benepe, 1984) 
e.g. operators, keywords etc. For instance the Code Listing 14, shows a 
conflict with the syntax of a comment in the syntax of C++ where the 
division operator is followed by an ‗*‘ which is meant for pointer. In order 
to avoid this issue, C++ programmer is bound to write extra spaces 
between code (Code Listing 15). Such issues should be addressed by the 
languages to make good quality comments. 
  



Taxonomy and Design Considerations for Comments in Programming Languages: A Quality Perspective 

152| 

Code Listing 14: Pointer Syntax 
clash with Block Comments in C++ 

Code Listing 15: Significance of space in 
C++ 

a =15/*ptr + 5; 
Incorrect (no space) Correct (with space) 

a=15/*ptr + 5; a =15/ *ptr + 5; 

 

5) CONCLUSION 
 
In this article, we have presented a taxonomy of comments used and 
supported by programming languages. We have highlighted the 
importance, usage, types, and issues while discussing the comments in 
detail. We have also presented quality design considerations for 
incorporating comments into a programming language‘s design. This 
would certainly help minimizing the possible side effects of using 
comments in programming languages. 
 
In future, we intend to extend this work by performing a rigorous 
analysis of contemporary programming languages by analyzing their 
conformance to the proposed design guidelines. 
 

REFERENCES 
 
Arafat, O. & Riehle, D. 2009. The commenting practice of open source. 

Proceedings of the 24th ACM SIGPLAN conference companion on Object 
oriented programming systems languages and applications. Orlando, 
Florida, USA: ACM. 

Bacchelli, A. & Bird, C. 2013. Expectations, outcomes, and challenges of 
modern code review. Proceedings of the 2013 International Conference 
on Software Engineering. San Francisco, CA, USA: IEEE Press. 

Benepe, D. B. 1984. In defense of simplicity of comment syntax. SIGPLAN 
Not., 19, 32-33. 

Depasquale, P.J. & Locasto, M. E. 2010. Teaching students effective 
practices for commenting computer source code: tutorial 
presentation. J. Comput. Sci. Coll., 25, 53-53. 

Farooq, M.S., Khan, S. A. & Abid, A. 2012. A Framework for the 
Assessment of a First Programming Language. Journal of Basic and 
Applied Scientific Research, 2, 8144-8149. 

Farooq, M.S., Khan, S.A., Ahmad, F., Islam, S. & Abid, A. 2014. An 
Evaluation Framework and Comparative Analysis of the Widely 
Used First Programming Languages. PLoS ONE, 9, e88941. 



Journal of Quality and Technology Management 

|153 

Fluri, B., Wursch, M. & Gall, H.C. Do Code and Comments Co-Evolve? 
On the Relation between Source Code and Comment Changes.  
Reverse Engineering, 2007. WCRE 2007. 14th Working Conference 
on, 28-31 Oct. 2007 2007. 70-79. 

Haouari, D., Sahraoui, H. & Langlais, P. How Good is Your Comment? A 
Study of Comments in Java Programs.  Empirical Software 
Engineering and Measurement (ESEM), 2011 International 
Symposium on, 22-23 Sept. 2011 2011. 137-146. 

Hirata, Y. & Mizuno, O. 2011. Do comments explain codes adequately?: 
investigation by text filtering. Proceedings of the 8th Working 
Conference on Mining Software Repositories. Waikiki, Honolulu, HI, 
USA: ACM. 

Jiang, Z.M. & Hassan, A. E. 2006. Examining the evolution of code 
comments in PostgreSQL. Proceedings of the 2006 international 
workshop on Mining software repositories. Shanghai, China: ACM. 

Kramer, D. 1999. API documentation from source code comments: a case 
study of Javadoc. Proceedings of the 17th annual international 
conference on Computer documentation. New Orleans, Louisiana, 
USA: ACM. 

Lind, R.K. 1989. An Experimental Investigation of Software Metrics and 
Their Relationship to Software Development Effort. IEEE 
Transactions on Software Engineering, 15, 649-653. 

Mason, J. 2003. Comments considered harmful. SIGCSE Bull., 35, 120-122. 
Misra♦C++ 2008. Guidelines for the use of the C++ language in critical systems. 
Norick, B., Krohn, J., Howard, E., Welna, B. & Izurieta, C. 2010. Effects of 

the number of developers on code quality in open source software: 
a case study. Proceedings of the 2010 ACM-IEEE International 
Symposium on Empirical Software Engineering and Measurement. 
Bolzano-Bozen, Italy: ACM. 

Raskin, J. 2005. Comments are More Important than Code. Queue, 3, 64-65. 
Seacord, R.C., Plakosh, D. & Lewis, G.A. 2003. Modernizing legacy systems: 

software technologies, engineering processes, and business practices, 
Addison-Wesley Professional. 

Sommerlad, P., Zgraggen, G., Corbat, T. & Felber, L. 2008. Retaining 
comments when refactoring code. Companion to the 23rd ACM 
SIGPLAN conference on Object-oriented programming systems 
languages and applications. Nashville, TN, USA: ACM. 



Taxonomy and Design Considerations for Comments in Programming Languages: A Quality Perspective 

154| 

Sridhara, G., Hill, E., Muppaneni, D., Pollock, L. & Vijay-Shanker, K. 2010. 
Towards automatically generating summary comments for Java 
methods. Proceedings of the IEEE/ACM international conference on 
Automated software engineering. Antwerp, Belgium: ACM. 

Tan, L., Yuan, D., Krishna, G. & Zhou, Y. 2007. /*icomment: bugs or bad 
comments?*. Proceedings of twenty-first ACM SIGOPS symposium on 
Operating systems principles. Stevenson, Washington, USA: ACM. 

Weinman, J.B. 1983. Nestable bracketed comments. SIGPLAN Not., 18, 44-
47. 

Ying, A.T.T., Wright, J.L. & Abrams, S. 2005. An exploration of how 
comments are used for marking related code fragments. SIGSOFT 
Softw. Eng. Notes, 30, 1-4. 

 


